# Advances in Cancer Immunotherapy

Immunology 101 for the Non-Immunologist December 7, 2013



#### Innate immunity:

- Resistance that exists before infection
- First line of defense
- Broad specificity
  - Macrophages
  - Neutrophils
  - Eosinophils
  - NK cells

### • Adaptive Immunity:

- Antigen specific receptors
- Respond to antigen stimulation with proliferation and differentiation
- Gives rise to immunologic memory
  - T lymphocyte
  - B lymphocyte antibody producing cells
  - Professional Antigen Presenting Cells (APC)

## Innate vs Adaptive

#### Cellular immunity:

- Mediated by T lymphocytes.
- Require antigen presentation by a professional antigen presenting cell (macrophage, dendritic cell, B cell)
- CD4+ (helper) T cells: Produce cytokines for activation of other immune cells
- CD8+ (cytotoxic) T cells: Recognizes and kills specific target cells

#### Humoral immunity:

- Antibody-mediated immunity
- B cells with help from dendritic cells and T helper cells

## **Adaptive Immunity**



### **Antigen Presentation**

### Major Histocompatibility Complex (MHC)

- Present peptides for recognition on the cell surface
  - class I CD8 T cells
    - Typically peptides derived from endogenous proteins
    - Restricted peptide size (8-11 aa), with anchor residues
  - class II CD4 T cells
    - Typically peptides derived from exogenous proteins
    - Broader peptide size (1->30 aa), with anchor residues
- Cross presentation



#### Types of antigen presenting cells (APC)

- <u>Conditional</u>
  - Endothelial cells, Epithelial cells, T-cells
- <u>Semi-professional</u>
  - B-cells, Macrophages
- Professional
  - Dendritic cells
- Provide co-stimulation signals (signal 2) and polarization signals (signal 3)

## Antigen Presenting cells



- Recognize and respond to many pathogens or non-self molecules
- Express multiple receptors
  - TLRs (TLR1 TLR11)
    - Recognize common molecular patterns in pathogens
      - TLR3 dsRNA
      - TLR4 LPS
      - TLR7 ssRNA
      - TLR9 CpG DNA
  - Lectins
    - Facilitate antigen uptake, cell-cell signaling
      - CD206, DC-Sign, ect

### **Dendritic cells**



## DC Signals





### **T** cell activation



- CTLA-4 induced in activated T cells
  - Also binds to CD80 and CD86
  - Higher affinity than CD28
  - Squelches the CD28 signal
  - May also recruit negative regulators
  - High expression on Treg

## **T** cell suppression



- PD-1
  - Transiently expressed in activated T cells, B cells, myeloid cells
  - Pro-inflammatory cytokines suppress expression
- PD-L1/PD-L2
  - Constitutively expressed on many cells and upregulated in response to inflammatory signals
- Can reverse unresponsiveness in chronic viral infections by interrupting PD-1-PD-L1 interaction

## **T** cell suppression

- Protection from autoimmune attack
- Provides protection for tumors
- Mechanisms:
  - Clonal deletion of self reactive T cells
  - Clonal inactivation of T cells in periphery

#### Treg cells:

- CD4, CD25, Foxp3 positive T cells
- Secrete TGF-beta, IL-10, IL-35 to inhibit T effector cells
- High expression of CTLA-4 to inhibit DC function and maturation
- Production of adenosine
- Effector cell lysis

### Tolerance

#### MDSC – Myeloid derived suppressor cells:

- Immature myeloid cells
  - Inhibits T cell function
    - Arginase 1 depletes L-arginine
    - Cysteine sequestration
    - Peroxynitrite release inhibits TCR
    - Decrease T cell homing
  - Promotes Tregs
  - Inhibits pro-inflammatory macrophages
- Induced by chronic inflammation or tumor environment

### Tolerance

- Normal immune state is in balance
  - Allows recognition of pathogens while avoiding reactivity to self
  - Has built in mechanisms to limit the immune response
  - Tumors tip the balance to a non-responsive state
  - Approaches to enhance activation while blocking the suppression mechanisms can allow immune recognition of the tumor

